Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Article in English | MEDLINE | ID: covidwho-1895234

ABSTRACT

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity
2.
Foods ; 10(12)2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1591505

ABSTRACT

The consumer acceptance of alternative plant-focused ingredients within the meat industry is growing globally. Oat protein is insoluble and used to increase product yield and fat retention. Furthermore, inclusion of oat protein can provide manufacturers another option for extending beef supplies. As the consumer diet shifts for improvements in nutritional density, oat protein is an alternative ingredient that lacks information on inclusion in a ground beef formulation. Coarse ground beef was allocated to one of four treatments, mixed with oat protein (0%, 1.5%, 3.5% and 4.5%), water, salt, pepper, textured vegetable protein, soy protein concentrate, and sodium tripolyphosphate. Meat blocks (n = 3 batches) were finely ground and formed into patties (N = 65/treatment). Patties were placed onto an expanded polystyrene tray, overwrapped with polyvinyl chloride film and displayed for 7 days. Instrumental color (L*, a*, and b*) decreased throughout simulated display (p = 0.0001). Increased usage rates of oat protein in patties resulted in greater cook yields (p = 0.0001). Objective measures of Allo-Kramer shear force values increased as oat protein inclusion rates increased (p = 0.0001). Oat protein can be incorporated in ground beef patties with positive effects on cook yield, but inclusion rate may have a deleterious impact on color and instrumental tenderness.

3.
Foods ; 10(8)2021 Aug 19.
Article in English | MEDLINE | ID: covidwho-1376778

ABSTRACT

Fresh beef storage in the retail setting can be presented in a variety of packaging methods, and identifying an alternative such as vacuum packaging to current traditional methods could potentially increase shelf life and reduce meat waste. The objective of this study was to identify the influence of packaging film and lean trimming sources on fresh ground beef surface color during a simulated retail display period. There were no differences (p > 0.05) in surface color redness (a*), yellowness (b*), chroma, or hue angle regardless of packaging film or lean trimmings. However, thiobarbituric acid reactive substances (TBARS) were greater (p < 0.05) for packages containing a greater percentage of CULL beef trimmings regardless of packaging film. In addition, pH values of ground beef packages did not differ (p > 0.05) among packaging film or lean trimming blends. Visual color did not differ (p > 0.05) throughout the simulated retail display period regardless of beef trimmings or packaging film. Microbial spoilage organisms were greater (p < 0.05) after the simulated display period. These results suggest that ground beef presented in a simulated retail setting using an alternative packaging platform, such as vacuum packaging, is plausible.

4.
J Virol Methods ; 289: 114048, 2021 03.
Article in English | MEDLINE | ID: covidwho-988686

ABSTRACT

We describe the optimisation of a simplified sample preparation method which permits rapid and direct detection of SARS-CoV-2 RNA within saliva, using reverse-transcription loop-mediated isothermal amplification (RT-LAMP). Treatment of saliva samples prior to RT-LAMP by dilution 1:1 in Mucolyse™, followed by dilution in 10 % (w/v) Chelex© 100 Resin and a 98 °C heat step for 2 min enabled detection of SARS-CoV-2 RNA in positive saliva samples. Using RT-LAMP, SARS-CoV-2 RNA was detected in as little as 05:43 min, with no amplification detected in 3097 real-time reverse transcription PCR (rRT-PCR) negative saliva samples from staff tested within a service evaluation study, or for other respiratory pathogens tested (n = 22). Saliva samples can be collected non-invasively, without the need for skilled staff and can be obtained from both healthcare and home settings. Critically, this approach overcomes the requirement for, and validation of, different swabs and the global bottleneck in obtaining access to extraction robots and reagents to enable molecular testing by rRT-PCR. Such testing opens the possibility of public health approaches for effective intervention during the COVID-19 pandemic through regular SARS-CoV-2 testing at a population scale, combined with isolation and contact tracing.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/isolation & purification , Saliva/virology , Specimen Handling/methods , Humans , RNA, Viral/analysis
SELECTION OF CITATIONS
SEARCH DETAIL